A 667 year record of coseismic and interseismic Coulomb stress changes in central Italy reveals the role of fault interaction in controlling irregular earthquake recurrence intervals
نویسندگان
چکیده
Current studies of fault interaction lack sufficiently long earthquake records and measurements of fault slip rates over multiple seismic cycles to fully investigate the effects of interseismic loading and coseismic stress changes on the surrounding fault network. We model elastic interactions between 97 faults from 30 earthquakes since 1349 A.D. in central Italy to investigate the relative importance of co-seismic stress changes versus interseismic stress accumulation for earthquake occurrence and fault interaction. This region has an exceptionally long, 667 year record of historical earthquakes and detailed constraints on the locations and slip rates of its active normal faults. Of 21 earthquakes since 1654, 20 events occurred on faults where combined coseismic and interseismic loading stresses were positive even though ~20% of all faults are in “stress shadows” at any one time. Furthermore, the Coulomb stress on the faults that experience earthquakes is statistically different from a random sequence of earthquakes in the region. We show how coseismic Coulomb stress changes can alter earthquake interevent times by ~10 years, and fault length controls the intensity of this effect. Static Coulomb stress changes cause greater interevent perturbations on shorter faults in areas characterized by lower strain (or slip) rates. The exceptional duration and number of earthquakes we model enable us to demonstrate the importance of combining long earthquake records with detailed knowledge of fault geometries, slip rates, and kinematics to understand the impact of stress changes in complex networks of active faults.
منابع مشابه
A model of the earthquake cycle along the San Andreas Fault System for the past 1000 years
[1] We simulate 1000 years of the earthquake cycle along the San Andreas Fault System by convolving best estimates of interseismic and coseismic slip with the Green’s function for a point dislocation in an elastic plate overlying a viscoelastic half-space. Interseismic slip rate is based on long-term geological estimates while fault locking depths are derived from horizontal GPS measurements. C...
متن کاملStress transfer and strain rate variations during the seismic cycle
[1] The balance of forces implies stress transfers during the seismic cycle between the elastobrittle upper crust and the viscoelastic lower crust. This could induce observable time variations of crustal straining in the interseismic period. We simulate these variations using a one-dimensional system of springs, sliders, and dashpot loaded by a constant force. The seismogenic zone and the zone ...
متن کاملViscoelastic earthquake cycle models with deep stress-driven creep along the San Andreas fault system
[1] We develop a two-dimensional boundary element earthquake cycle model including deep interseismic creep on vertical strike-slip faults in an elastic lithosphere coupled to a viscoelastic asthenosphere. Uniform slip on the upper part of the fault is prescribed periodically to represent great strike-slip earthquakes. Below the coseismic rupture the fault creeps in response to lithospheric shea...
متن کاملPostseismic relocking of the subduction megathrust following the 2007 Pisco, Peru, earthquake
Characterizing the time evolution of slip over different phases of the seismic cycle is crucial to a better understanding of the factors controlling the occurrence of large earthquakes. In this study, we take advantage of interferometric synthetic aperture radar data and 3.5 years of continuous Global Positioning System (GPS) measurements to determine interseismic, coseismic, and postseismic sl...
متن کاملTriggering Effect of M 4–5 Earthquakes on the Earthquake Cycle of Repeating Events at Parkfield, California
Stress perturbations influence earthquake recurrence and are of fundamental importance to understanding the earthquake cycle and determining earthquake hazard. The large population of repeating earthquakes on the San Andreas fault at Parkfield, California, provides a unique opportunity to examine the response of the repeating events to the occurrence of moderate earthquakes. Using 187 M 0:4 to ...
متن کامل